
ARTICLE OPEN

Grass species identity shapes communities of root and leaf
fungi more than elevation
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Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute
under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal
mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal
interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We
sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations
from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of
leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional
groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root
endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not
vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and
belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change
may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of
host grasses.

ISME Communications; https://doi.org/10.1038/s43705-022-00107-6

INTRODUCTION
Fungal symbionts colonize every plant species on Earth, often
providing critical functions such as acquisition of soil water and
nutrients [1], protection against pathogens [2] or herbivores [3],
and mitigation of abiotic stress [4]. For example, fungal symbionts
can increase plant biomass up to 120% under environmentally
stressful conditions (reviewed by Kivlin et al. [5]), especially under
thermal stress [6]. Consequently, plant-fungal interactions may
shift realized plant niches compared to plants growing in isolation
[7]. Fungi are a critical component of how plants cope with
environmental stress under a changing environment [8]. While
fungi may alter plant success in different environments, plants
may in turn shape the composition of fungal communities,
affecting the distribution of fungi along environmental gradients
(reviewed by Rudgers et al. [9]). Therefore, determining how
current abiotic factors structure the diversity and composition of
plant-associated fungi can help to predict how plant-fungal
associations will respond to future environmental change.
Despite the potentially critical roles of fungal symbionts in

buffering plants from environmental extremes, their distributions
along abiotic gradients, such as temperature gradients that track
altitude, remain largely uncharacterized. Our meta-analysis [10]
identified the knowledge gaps for altitudinal gradients, which are
important because altitudinal range shifts have occurred for many
plants as the climate has warmed [11]. These knowledge gaps
include sparse data on root endophytes other than mycorrhizal

fungi and a lack of studies that examine multiple fungal guilds
(e.g., mycorrhizal fungi, root fungal endophytes, leaf fungal
endophytes) across multiple plant species and replicated environ-
mental gradients [10]. Most previous approaches have examined
one environmental gradient [12–14], one plant species [15–18], or
one fungal guild [19–21], hindering both generalizations about
patterns of fungal symbiont distributions (see [10]) and the
detection of environmental variables that underlie altitudinal
patterns (see [22]).
At least three scenarios could occur as plant and fungal

altitudinal ranges shift with climate change. 1: Plants and fungal
symbionts could move up mountains in tandem. As long as the
fitness outcomes of symbiosis are unchanged, overall plant-fungal
interactions will remain stable. 2: Plants that migrate up
mountains can gain novel fungal symbionts, including novel
mutualists and novel pathogens. 3: Plants that migrate upward
can lose fungal symbionts. Previous evidence for shifts in plant-
fungal symbiosis along elevational gradients is mixed. While
fungal mutualist abundance in plants can vary with elevation, the
direction of the pattern appears to be highly specific to plant
identity in the few studies that compare plant species across the
same elevation gradients (e.g., [23, 24]). Likewise, limited empirical
evidence for fungal symbiont diversity or composition turnover
suggests both plant species identity and fungal guild identity
could determine the patterns of fungal distributions along
environmental gradients [10, 16, 25–28].
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Aboveground and belowground fungal symbionts may face
different environmental and plant host niche constraints that,
along with dispersal capacities, influence their altitudinal distribu-
tions in divergent ways. For example, the soil environment may
buffer root endophytes and arbuscular mycorrhizal (AM) fungi
from thermal extremes in air temperatures. Aboveground, leaf
endophytes may face greater thermal variation than root fungi,
but less variation in other stressors, such as water or carbon
resources. In deciduous plants, leaf endophytes must recolonize
annually, whereas root endophytes may persist in roots and the
soil matrix with fewer start-up costs. Finally, fungi that differ in
host specificity may also diverge in sensitivity to environmental
stressors. For example, in grasslands AM fungi are often host
generalists ([29] but see [30]) that may have wide environmental
tolerances, whereas pathogens can be highly specialized to hosts
and environments [31]. Large-scale analysis of the specificity of
leaf or root endophytes across the plant tree of life are lacking, but
some evidence suggests that leaf endophyte composition may be
strongly structured by plant species identity [20, 32] or plant traits
[33, 34]. Root endophytes also vary in diversity and composition
among plant taxa [35] and among root morphologies [36], but
robust comparative analysis requires studies on multiple fungal
guilds within the same plant taxa to parse plant identity from
other variables.
Understanding shifts in fungal interaction network structures

across niche space can advance general knowledge on fungal
geographic distributions as well as inform predictions on future
shifts in plant-fungal interactions under environmental change.
Although the context-dependency of plant-fungal interactions
remains an active area of investigation [9], to our knowledge, no
studies have examined changes in both species and interaction
turnover (i.e., shifts in network structure via changes in which
fungal species are associated with which plant species) for
fungal symbionts along replicated environmental gradients.
Network structures of plants and fungi may shift along
environmental gradients, even if overall community composi-
tion does not track environmental stress (e.g., for pollination:
[37]). For example, rewiring could occur when all interacting
species are present across locations, but a given species
associates with either different partner species or different
relative abundances of the same set of species in different
environments. The symbiotic functions of fungi also vary with
the environmental context [38]. For example, the same fungus
may colonize one plant species in a warm, low elevation
environment but associate with a different host species in a
cold, high elevation environment. Plant-fungal interactions may
also be specialized, such that a given set of fungi occupy only
one environment or plant species [39]. Furthermore, fungal
guilds may differ in average degree of specialization, reflecting
their environmental niche, host niche, dispersal capability, or
longevity. When environmental stress structures fungal com-
munities, fungal and plant network structures may be least
specialized at the highest, most stressful elevations due to
abiotic factors overriding host interactions. Conversely, plant-
fungal network structures may be more specialized at higher
elevations when high elevation abiotic stressors magnify the
costs/benefits of plant-fungal associations.

QUESTIONS/HYPOTHESES
To evaluate the relative importance of factors that structure leaf
and root fungal symbiont communities, we sampled fungal
endophytes from grasses across six elevation gradients that
vary in abiotic conditions. We focus on grasses because grasses
are common in mountain ecosystems and occur across large
elevation ranges. Moreover, grass species host diverse fungal
endophytes in their leaves in roots. We addressed the following
questions.

(1) What is the relative importance of environmental factors
versus grass species identity for fungal symbiont diversity
and community composition? Do fungal community
patterns along environmental gradients differ among
guilds: leaf endophytes, root endophytes, or arbuscular
mycorrhizal fungi? We predicted grass identity to exceed
environmental variables in structuring fungal symbiont
communities along elevation gradients, and that fungal
guilds differ in how community structure tracks environ-
mental gradients, likely due to their location within the
plant and primary functional roles. To evaluate these
predictions, studies must sample the same plant taxa over
replicated environmental gradients and characterize mul-
tiple fungal guilds within individual plants, components
absent from prior studies.

(2) Is there turnover in fungal symbiont identity or relative
abundance with elevation, and how much does turnover
vary among fungal guilds (i.e., leaf endophytes, root
endophytes, AM fungi) or functional groups (i.e., patho-
gen, saprotroph, mutualist)? We predicted strong turnover
with elevation, and that mutualistic/mycorrhizal fungi
would dominate over saprotrophs and pathogens in the
most extreme, highest elevation alpine environments.

(3) Does grass-fungal network structure track elevation? If so,
how much do fungal guilds differ in altitudinal variation in
network structure? We predicted that network structure
would track elevation most strongly for leaf endophytes
among the fungal guilds because of their high exposure to
climatic conditions that vary with elevation.

MATERIALS AND METHODS
Study sites
We sampled foliar fungal endophytes and root fungi (root endophytes and
AM fungi) in the Colorado Rockies at the Rocky Mountain Biological
Laboratory, Gunnison Co., Colorado, USA (38°57’N, 106°59’W). This region
has predictable decreases in air temperature (c. 0.8 °C per 100m; [40]) and
declines in soil nutrients with altitude [41], but increases in precipitation,
mainly as snow [42]. The entire region is warming at rates of 0.5–1.0 °C per
decade [43].
To capture environmental, spatial, and grass-host specific variation in

fungal guilds, we sampled 66 sites encompassing 9–13 elevations from
each of six altitudinal gradients in July 2014 (Supplementary Table S1,
Supplementary Fig. S1). Elevational gradients represented separate
mountains in the Gunnison Basin and were located within 20 km of each
other. We created a regional climate model to interpolate average number
of growing degree days (GDD, base 0 °C), mean annual temperature (MAT),
maximum temperature (Tmax), minimum temperature (Tmin), mean
annual precipitation (MAP), and mean snow depth (MSD) for each site
based on data from 29 local meteorological stations [44]. At each site, soil
edaphic parameters were measured on dried soil at the UC Davis soils lab
(see [24] for more details) and soil nutrients at Western Ag (Saskatoon,
Canada). Soil pH was measured in a 1:1 solution with diH2O, and soil
moisture was measured gravimetrically. Physical characteristics of each site
(e.g., aspect, soil depth, elevation) were measured as described in Lynn
et al. [44]. Environmental variation across sites was large. For example, MAT
varied from 7.1 to 13.3 °C, MAP from 563 to 1171mm, and Total N from 2
to 316 ug/g dry soil (Table S1).

Host plant species
We focused on grasses because grasslands cover ~20% of Earth’s land
surface [45] and dominate subalpine meadows of the Rocky Mountains.
In addition, individual grass species spanned the entire elevational range
of our study system [46], whereas tree, shrub, and forb species did not.
At each location, we sampled nine adult individuals from up to 13 grass
species representing five genera (Poaceae, subfamily Pooideae; Supple-
mentary Table S1). Many sites had fewer than 13 grass species present,
but all sites, except for two, had at least two grass species. Samples were
composited by tissue type (leaves v. roots) and grass species within
each site.
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Fungal composition
Collected root and leaf samples were surface sterilized (1 min in 95%
ethanol, 2 min in 1% sodium hypochlorite solution, and 2min in 70%
ethanol) over ice to focus on the endophytic fungal community [34].
Following surface sterilization, samples were rinsed in purified water (Milli-
Q Integral Water Purification System, EMD Millipore Corporation, Billerica,
MA), stored in RNAlater, and refrigerated. All samples were then frozen in
liquid nitrogen and ground using a mortar and pestle. Total DNA was
extracted from ~50mg of ground sample using QIAGEN DNeasy plant
extraction kits (QIAGEN Inc., Valencia, CA).
Fungal composition was characterized using barcoded primers target-

ing the ITS2 region for leaf and root endophytes [47], and FLR3-FLR4
primers targeting ~300 bp in the 28S region for AMF [48]. Each PCR
contained 5 μL of ~1–10 ng/μL DNA template, 21.5 μL of Platinum PCR
SuperMix (Thermo Fisher Scientific Inc., Waltham, MA), 1.25 μL of each
primer (10 μM), 1.25 μL of 20 mg/mL BSA, and 0.44 μL of 25 mM MgCl2.
For the ITS2 primers, the reactions included an initial denaturing step at
96 °C for 2 min, followed by 24 cycles of 94 °C for 30 sec, 51 °C for 40 s, and
72 °C for 2 min, with a final extension at 72 °C for 10 min. For the 28S
primers, reactions started with an initial denaturing step at 93 °C for 5 min,
followed by 33 cycles of 93 °C for 1 min, 55 °C for 1 min, and 72 °C for
1 min, with a final extension at 72 °C for 10 min.
Three PCR replicates from each sample were pooled and then cleaned

and concentrated using a ZR-96 DNA Clean & Concentrator-5 (Zymo
Research Corporation, Irvine, CA). PCR was then carried out on all samples
to add dual indexes and Illumina sequencing adaptors; each reaction
began with an initial denaturing step at 98 °C for 30 s, followed by 7 cycles
of 98 °C for 30 s, 62 °C for 30 s, and 72 °C for 30 s, with a final extension at
72 °C for 5 min. Sequencing was performed by the Genomic Sequencing
and Analysis Facility at The University of Texas at Austin using paired-end
250 base Illumina MiSeq v.3 chemistry (Illumina, Inc., San Diego, CA). We
aimed to obtain a minimum of 30,000 reads/sample for the ITS2 region and
20,000 reads/sample for the 28S region. All sequences are deposited in the
NCBI SRA database under accession number (PRJNA639093).

Bioinformatics
We processed reads to generate OTUs using commands from USEARCH
(v9.2.64). Reads from previous studies [24] and this study were clustered
together to improve OTU delineations for a total of 36,754,931 reads. We
merged paired-end reads using the fastq_mergepairs from USEARCH with
“fastq_maxdiffs” set to 20 and “fastq_maxdiffpct” set to 10 to ensure
proper merging at a low error rate. The merged reads and the forward
unmerged reads were trimmed at the primer sites using cutadapt with “e”
set to 0.2, “m” set to 200, and untrimmed reads were discarded. Merged
reads were filtered using fastq_filter from USEARCH with “fastq_maxee” set
to 1.0. The forward reads were first trimmed to 230 using fastx_truncate
from USEARCH with “trunclen” set to 230 and then filtered by fastq_filter
from USEARCH with “fastq_maxee” set to 1.0. We then concatenated the
merged and forward reads into one file and de-replicated using
fastx_uniques from USEARCH with “minuniquesize” set to 2. After these
steps, 11,357,274 sequences remained. We clustered these sequences to
form OTUs at 97% similarity [49] using cluster_otus command from
UPARSE. The reads (all reads before filtering step) of each sample were
mapped to OTUs with usearch_global from USEARCH with “id” set to 0.97.
We determined taxonomy for the representative OTUs using sintax from
USEARCH with the database set to UNITE all eukaryotes (v. 8.2) “strand” set
to both and “sintax_cutoff” set to 0.8 [50]. Representative OTUs were also
blasted against Genbank with “perc_identity” set to 80 and “max_target_-
seqs” set to 50. All OTUs identified as “fungi” were retained, and OTUs
labeled as “unknown” or “unidentified” were manually inspected based on
blast results to determine retention. Our filtering criteria left between 5
and 418 OTUs per sample (Supplementary Table S2).
Due to low fungal abundance in leaves [34], many leaf samples were

dominated by plant sequences (average ~78% plant reads). Therefore,
fungal sequence numbers in leaf samples were low, despite adequate
sequencing depth to capture trends in fungal endophyte communities
across sites based on prior analyses [24, 34, 35]. We included only samples
that contained at least 50 fungal sequences after data processing (Leaves
N= 192, Roots N= 191, AMF N= 251), and most samples had much
greater sequencing depth, especially for roots (Supplementary Table S2).
Nevertheless, there were no correlations between sequence read depth
and richness, alpha diversity, or evenness of our samples (P > 0.05 in all
cases), and plant species did not differ in the average sequencing depth for
samples (P > 0.05). Data for each fungal OTU were transformed to the

proportion of total sequence abundance to minimize any differences in
sampling effort [51].

Diversity and composition. We calculated the alpha diversity metrics of
richness, Shannon’s Diversity, Inverse Simpson’s Diversity, and Pielou’s
Evenness. For each fungal guild, differences among plant species and
elevation in alpha diversity were first determined using a general linear
mixed effects model with plant species (categorical) and elevation
(continuous) as fixed effects and site nested within elevation gradient
(e.g., mountain identity, Supplementary Table S1, Supplementary Fig. S1)
as random effects to account for the lack of statistical independence
among plant species sampled at the same site and among sites located
within the same mountain elevation gradient (Supplementary Fig. S1).
Models were constructed using the lmer function in R package lme4
[52, 53]. To address, do fungal community patterns along environmental
gradients differ among guilds: leaf endophytes, root endophytes, or
arbuscular mycorrhizal fungi?, we then compared alpha diversity metrics
among fungal guilds using a general linear mixed effects model with
fungal guild, plant species, and elevation as fixed effects and site nested
within elevation gradient as random effects. In all models, we evaluated
parameter fit with analysis of deviance using Wald chi-square tests
and corrected for multiple comparisons using a false discovery alpha of
0.05. Differences among grass species were determined using Tukey
post-hoc tests.
Because elevation is a good proxy for variation in both climate and soil

parameters (Supplementary Table S1), in all community analyses, we first
ran models with grass species and elevation to parse biotic versus
abiotic influences on fungal OTUs, then secondly ran full variance
partitioning models with all environmental covariates (Supplementary
Table S1, climate, physical, soil) in addition to grass species identity and
space (gradient location, Supplementary Fig. S1). Because leaf and root
endophytes were sequenced using different primers than AM fungi, we
could not compare composition among the three guilds directly. Instead,
we compared the relative influence of biotic and abiotic drivers on
fungal composition within each guild to compare patterns among
guilds. To do so, we first used distance-based redundancy analysis
(dbRDA) to analyze the effects of plant host species and elevation on
fungal composition for general fungal communities in leaves and roots
and separately for AM fungal communities in roots. All models were run
on quantitative Jaccard indices of fungal composition for each guild and
included site nested within elevation gradient (e.g., mountain side,
Supplementary Fig. S1) as random effects. Second, to evaluate which
environmental variables most strongly influenced fungal composition,
we further partitioned variance in fungal composition due to grass
species, climate variables (MAP, MAT, MSD, Tmax, Tmin, and GDD), soil
variables (total nitrogen, total phosphorus, nitrate, ammonium, calcium,
magnesium, potassium, iron, manganese, sulfur, aluminum, soil pH, soil
gravimetric moisture content), physical variables (aspect degree, aspect
category (e.g., cardinal direction), slope, soil depth, and elevation) and
spatial variables (latitude and longitude) using the varpart function in
Vegan v. 2–5.3 [54]. Plots of fungal composition by plant host were also
generated using dbRDA separately for each fungal guild. Spatial
variables were de-trended and tested for spatial autocorrelation using
the ade4 package v. 1.7–16 [55]. When we detected significant spatial
autocorrelation eigenvectors, we included these in the spatial variable
matrix. To characterize how many fungal taxa occurred in multiple plant
taxa and elevations, we used the VennDiagram package v. 1.6.20 [56].

Turnover and rewiring. To evaluate whether fungal composition was
driven by grasses associating with different fungal taxa or differing relative
abundances of the same fungal taxa, we first performed a beta partitioning
analysis using betapart v. 1.5.3 [57]. Each fungal guild was analyzed
separately. Next, to examine turnover in the abundances of fungal
functional groups (pathogens, saprotrophs, mutualists), we defined groups
using the FungalTrait database, which merges previous databases into one
cohesive framework of 17 functional trait types (referred to here as
functional groups; [58]). We recognize that fungal functions are highly
environmentally dependent and therefore these functional groups may
represent potential function more than actual function. Functional group
identity was ascribed to 60% of leaf endophyte and 62% of root endophyte
fungal taxa. Then, cumulative abundance of proportionally transformed
sequence reads in each functional group was analyzed using a general
linear mixed effects model with grass species and elevation as fixed effects
and site nested within elevation gradient as random effects, as above.
Finally, we defined indicator species within the OTUs that comprised at
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least 1% of the total abundance of each fungal guild by grass host,
gradient, and elevation classes (rounded to the nearest 100m) using the
indicspecies package v. 1.7.9 [59]. Functional group assignments using the
FungalTrait database from above were assigned to each indicator taxon
[58]. A large percentage of significant indicator taxa out of the total
number of OTUs would confirm that turnover in the species identity of
fungal associations is stronger than turnover in the relative abundances of
the same fungal taxa.

Network properties. To address does grass-fungal network structure track
elevation?, we analyzed four properties that encompass different facets of
ecological networks at the site level. First, we calculated network
nestedness, or the propensity for specialists to interact with the same
plant species as generalists, using the weighted NODF (Nestedness metric
based on Overlap and Decreasing Fill; [60]). Second, we calculated
complexity as linkage density or the average number of interactions per
plant species [61]. Third, to characterize specialization, we used the H2’
Index [62]. Finally, network evenness was calculated as Alatalo’s interaction
evenness [63]. In all cases, these network metrics were weighted indices to
increase accuracy [64], and calculations were performed in the Bipartite
package v. 2.15 [65]. To address, how much do fungal guilds differ in
altitudinal variation in network structure?, we compared network-level
statistics among fungal guilds using a general linear mixed effects model
with fungal guild as a fixed effect, number of grass hosts as a fixed effect,
and gradient as a random effect (function lmer in lme4 [52],). We
compared relationships with elevation separately for each fungal guild,
using general linear mixed effects models with elevation as a fixed,
continuous effect, number of grass hosts within the network as a fixed,
continuous effect, and gradient identity as a random effect (Supplemen-
tary Table S1, Supplementary Fig. S2). We evaluated parameter fit with
analysis of deviance using Wald chi-square tests using the car package
3.0–10 in R [66].
All data met model assumptions of normality of residuals and

homogeneity of variance. All analyses were performed in R v. 3.5.0 [53].

RESULTS
1: What is the relative importance of environmental factors versus
grass species identity for fungal symbiont diversity and community
composition? Do patterns along environmental gradients differ

among fungal guilds: leaf endophytes, root endophytes, or arbuscular
mycorrhizal fungi?

Alpha diversity
Grass identity was more important to fungal symbiont diversity than
elevation. Leaf endophyte richness (χ2= 39.8, P < 0.001; Fig. 1A),
Shannon’s Diversity (χ2= 94.4, P < 0.001; Supplementary Fig. S2A),
Inverse Simpson’s Diversity (χ2= 30.5, P= 0.002; Supplementary
Fig. S2D), and Pielou’s Evenness (χ2= 90.5, P < 0.001; Supplementary
Fig. S2G) differed among grass species but not elevations. Similarly,
grass species explained the most variation in root endophyte
richness (χ2= 92.2, P < 0.001; Fig. 1B), Shannon’s Diversity (χ2= 51.5,
P < 0.001, Supplementary Fig. S2B), Inverse Simpson’s Diversity (χ2=
30.2, P= 0.003; Supplementary Fig. S2E), and Pielou’s Evenness
(χ2= 24.5, P= 0.017; Supplementary Fig. S2H), and no root
endophyte diversity indices varied significantly with elevation. AM
fungal diversity also only differed among grass species but only for
Shannon’s Diversity (χ2= 24.5, P= 0.018; Supplementary Fig. S2C)
and Inverse Simpson’s Diversity (χ2= 33.1, P= 0.001; Supplementary
Fig. S2F) indices.
Fungal symbiont guilds differed in mean diversity, despite a lack

of altitudinal trends in diversity. The root endophyte guild was the
most diverse, and the leaf endophyte guild was the least diverse.
Specifically, root endophyte richness (mean= 137) was ~2.5x larger
than either leaf endophyte (mean richness= 52) or AM fungi
richness (mean richness= 55, P< 0.001). Similarly, Shannon’s Diver-
sity of root endophytes was ~1.2x higher than leaf endophytes and
~1.3x higher than AM fungi (P< 0.001). Also, the Inverse Simpson’s
Diversity of root endophytic fungi was higher than AM fungi and leaf
endophytic fungi (P< 0.001). Evenness was ~1.1x higher for AM fungi
than for leaf or root endophyte guilds (P < 0.001).

Composition
Fungal guilds also diverged in the relative importance of grass species
identity and elevation for explaining variation in community
composition. Leaf fungal endophyte communities varied only by
grass species (χ2= 285.0, P< 0.001; Fig. 2A, Supplementary Fig. S3)
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Fig. 1 Fungal richness by grass species. Richness by grass species for leaf fungal endophytes (A), root fungal endophytes (B), and AM fungi (C).
Means and 95% confidence intervals are plotted for each grass species. Tukey posthoc designations after correcting for false discovery rate of
alpha= 0.05 are denoted with lower case letters. Grass species always contributed more to the variation in fungal alpha diversity than elevation.
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but not by elevation (P> 0.05). Variance partitioning analysis
upheld grass species as the main driver of variation in leaf fungal
endophyte composition (adjR2= 0.08, P< 0.001; Fig. 3A), with
ancillary, small contributions from soil factors (adjR2= 0.01, P<
0.001) and spatial geography (adjR2= 0.02, P= 0.018). In contrast, for
root endophytes, both grass host identity (χ2= 109.1, P< 0.001;
Fig. 2B, Supplementary Fig. S3) and elevation (χ2= 21.7, P< 0.001)
explained variation in composition. In the full model of variance
partitioning, grass identity still contributed the most to root fungal
endophyte composition (adjR2= 0.03, P< 0.001), followed by soil
factors (adjR2= 0.02, P< 0.001), and a small influence of spatial
geography (adjR2= 0.01, P< 0.001; Fig. 3B). For AM fungi, grass

species also explained more variance in community composition
(χ2= 54.7, P< 0.001) than elevation (P> 0.050) and was the primary
driver of AM fungal composition (adjR2= 0.05, P< 0.001; Fig. 2C,
Supplementary Fig. S3) when compared against all environmental
variables. Like root endophytes, AM fungi composition tracked soil
variables (adjR2= 0.05, P< 0.001) and spatial geography (adjR2= 0.02,
P= 0.007; Fig. 3C), but these factors explained more variation in the
composition of AM fungi than in the composition of leaf or root
endophytes.
2: Is there turnover in fungal symbiont identity or relative

abundance with elevation, and how much does turnover vary
among fungal guilds or functional groups?
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Variation in composition within fungal guilds was always due to
turnover in fungal species identity (leaves= 99%, roots= 99%, AM
fungi= 98.8%), rather than changes in the relative abundance of
the same fungal taxa (all <0.01%). Indicator taxa confirmed these
trends because we identified a large percentage of indicator taxa,
especially for AM fungi (1% leaf fungal endophyte taxa, 2% root
fungal endophyte taxa, 14% of AM fungal taxa; Supplementary
Table S3), a sign of high turnover. We predicted the most
altitudinal turnover for leaf endophytes because of their exposure
to air temperatures that vary strongly with elevation [22].
Unexpectedly, leaf indicator taxa grouped mostly by grass host
(84%; Fig. 4A), with no signal from elevation. For root endophytes,
indicator taxa mostly grouped by grass host (67%) with some
influence of elevation (49%; Fig. 4A). In contrast, AM fungi

indicator taxa grouped mostly by elevation (70%), with smaller
influences of grass species identity and spatial location (Fig. 4B).
Most root endophyte indicator taxa were putative saprotrophs

(49%), and most leaf endophyte indicator taxa were putative
pathogens (44%); all AM fungal indicator species were by
definition mutualists due to the trait database designation. Due
to the strong signal of grass host influence on both composition
and indicator taxa, we examined how many host species each
fungal taxon colonized. When all OTUs were considered, many leaf
endophyte taxa (43%) and root endophyte taxa (34%) colonized
only one grass species (Fig. 5A,B), while less than 1% of leaf
endophyte taxa and 1% of root endophyte taxa occurred in all 13
grass species. However, AM fungi were more generalist, with 15%
of taxa colonizing all grass species (Fig. 5C, median number of
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host taxa= 8), and only 12% colonizing one grass host. However,
host specificity may be highest among OTUs that are relatively
rare. When we considered only OTUs that are comprised of at least
1% of overall sequence reads, 14% of leaf endophyte taxa, 4% of
root endophyte taxa and less than 1% of AM fungal taxa colonized
only one grass species. Conversely, among these abundant OTUs,
1% of leaf endophyte taxa, 11% of root endophyte taxa and 26%
of AM fungal taxa colonized all grass species.
Plant specificity even extended to fungal functional groups.

Shifts in fungal functional group composition (pathogens,
saprotrophs, and mutualists) tracked grass identity for both leaf
endophytes (Pathogens χ2= 31.2, P= 0.002; Saprotrophs χ2=
51.2, P < 0.001; Mutualists χ2= 204.9, P < 0.001), and root endo-
phytes (Pathogens χ2= 36.4, P < 0.001; Saprotrophs χ2= 26.6, P=
0.009; Mutualists χ2= 77.6, P < 0.001; Supporting Information
Fig. S4) with no significant influence of elevation (P > 0.050).
3: Does grass-fungal network structure track elevation? If so, how

much do fungal guilds differ in altitudinal variation in network
structure?
Grass-fungal network structure tracked elevation only for the root

endophyte guild. For root endophytes, network nestedness
increased at higher elevations (χ2= 14.9, P < 0.001; Fig. 6A) whereas
network specialization decreased at higher elevations (χ2= 11.8, P
< 0.001; Fig. 6B). AM fungi and leaf endophyte network structure
did not significantly track elevation (P > 0.050, Fig. 6). None of the
fungal guilds had network complexity or evenness metrics that
followed elevation gradients (P > 0.050; Fig. 6C, D).
Regardless of elevation, network nestedness (χ2= 17.371, P <

0.001) and specialization (χ2= 16.571, P < 0.001) significantly
varied among the fungal guilds. AM fungi networks were the
least specialized and most nested, whereas leaf endophyte
networks were the most specialized and least nested, and root
endophyte networks had intermediate network properties. All
fungal guilds differed from one another in network nestedness
and specialization (P < 0.05).

DISCUSSION
Predicting how plant-fungal associations will respond to future
environmental change requires understanding how current
environments structure fungal symbiont diversity and composi-
tion. Here, differentiation of fungal communities among grass
species in the Rocky Mountains of Colorado was unexpectedly
high given both the large environmental heterogeneity encom-
passed by our 2700–4100m span in elevation and the small
spatial scales at which grass species co-occurred within sites
(generally 0.1–10m). Indeed, metrics of alpha diversity and
composition for all fungal guilds varied more among grass species
than with other environmental drivers, including elevation or

spatial geography (e.g., identity of the mountain sampled). Plant
identity was a surprisingly strong structuring force given the
constraint of our study to a single subfamily of grasses. If plants
are the main driver of symbiotic fungal community structure, then
future environmental changes, such as climate warming or
nitrogen deposition, are likely to have the largest impacts on
symbioses through shifts in plant species geographic ranges,
population sizes, or phenologies, rather than through the direct
effects of temperature, eutrophication, or other abiotic drivers.
Many studies have documented shifts in plant species distribu-
tions [11] or phenologies [67] associated with environmental
change, yet it remains unknown how much plant interactions with
fungal symbionts (or other species) will be impacted by these
shifts [44, 68]. Given the high plant-specificity in our study, if
dispersal trajectories or phenologies of plant and fungal partners
shift at different rates, it is likely that plant-fungal interactions will
re-assort with changing environmental conditions, a phenomenon
named re-ordering (see [9]).
Previous studies along the same altitudinal gradients revealed

that culturable leaf fungal endophytes [34] and root fungal
endophytes [35] were also strongly differentiated among plant
taxa. Similarly, a survey of three of the grass species included here
using next-generation sequencing methods at half of our sites
including an earlier time period (year 2012) confirmed a strong
influence of grass species identity on fungal endophyte composi-
tion that exceeded the impacts of long-term, field experimental
warming [24]. Differences in fungal endophyte identity among
plant hosts may occur because of differences in plant size [18],
plant chemistry [69], plant habitat, or other plant traits [70]. Here,
because the grass species we surveyed had similar habitats and
also similar phenologies that track snow melt [44], habitat and
phenology were unlikely to be important drivers. Plants are the
proximate habitat for the fungal endophytes and mycorrhizal
fungi surveyed here and as such may buffer these fungi from
external climatic or resource stressors (e.g., freezing temperatures,
carbon resources). Indeed, many studies have demonstrated
differences in plant-associated microbiomes among plant hosts
(e.g., [71–73]). However, most previous studies either combine
data across multiple studies (confounding plant species identity
with location/environment) or focus on only one fungal guild or
plant species along one environmental gradient, limiting the
ability to parse environmental variables as sources of variation in
community structure. Here, we demonstrate robustly that plant
species conditioning of fungal endophytic and mycorrhizal
diversity and composition was consistent across 13 grass species
and six steep environmental gradients in our regional survey of
the Rocky Mountains of North America.
Although grass identity had an overriding influence on all

fungal guilds, leaf fungal diversity and composition were most

0

20

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

250

500

750

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

200

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N
um

be
r o

f O
TU

s

Number of Plant Species Colonized

B CA

Fig. 5 Plant host breadth for each fungal OTU. Number of plant species colonized by each leaf fungal endophyte OTU(A), root fungal
endophyte OTU(B) or AM fungal OTU (C). Leaf and root endophytes mostly colonized only one plant species, but AM fungi typically colonized
more than one plant species (median host species= 8), with 15% of AM fungal OTUs colonizing all plant species.

S.N. Kivlin et al.

7

ISME Communications



strongly influenced by grass species identity, while AM fungi
were least influenced by their plant host association. Leaf
endophytes may form tight associations with plants by
continuously living in plant meristems [74] or nearby leaf litter
[75], even during dormancy under nine months of snowpack,
and may also be more dominated by host-specific pathogens

than root-associated communities, as suggested by our survey.
Conversely, root endophytes and particularly AM fungi may
require generalist strategies, colonizing multiple nearby plant
hosts via common fungal networks belowground [76] or may
experience common environmental filtering processes in soils
versus plant hosts (e.g., [77]).
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Despite advances in analyses during the past few decades (e.g.,
[33, 78]), the ecological specificity of most plant-associated fungal
taxa is still unknown [30]. Here, plant pathogens were the most
likely to be host-specific in grass leaves while saprotrophs
represented many of the root endophyte indicator taxa. Indicator
AM fungi in contrast differed more among elevations or
mountainsides than did root or leaf endophytes. These results
were especially evident at the taxon level; many leaf and root
endophyte taxa associated with only one host, whereas many AM
fungal taxa associated with all 13 grass species. These results were
further supported by the fact that turnover in fungal taxa was high
in all fungal guilds, with few examples of changes in abundance of
the same taxa. A previous study similarly demonstrated that root
endophytes had more plant-host specific associations than AM
fungi [13]. Similarly, plant-pathogen relationships are often more
host-specific than other fungal functional types (reviewed by
Barrett et al. [79]), especially in long-lived plants.
At broad levels of biological organization, fungal functional

groups demonstrated greater specificity among grass hosts than
structuring by elevation, similar to the patterns for specific fungal
taxa. Although fungal symbionts can buffer plants from environ-
mental stress in experimental trials (reviewed by Kivlin et al. [5]),
our results suggest that the costs and benefits of fungi may be
highly host specific. Here, along steep environmental gradients,
some grass species (e.g., Achnatherum lettermannii) hosted more
putative pathogens while others (e.g., Poa leptocoma) hosted
more putative mutualists. Given the role of beneficial fungi in
plant stress amelioration [5], we expected mutualists to dominate
more stressful, high elevation environments, but our evidence
indicates that such relationships strongly depend on grass host
identity. A caveat is that all grass species were not found across all
elevations in our survey. However, our results at the grass-species
scale (here and in [24]), combined with previous tests of variation
in grass-species-specific fungal associations across environmental
gradients support the conclusion that environmental trends in the
abundance of putatively mutualistic fungi are highly host-specific
[10, 26, 28]. A possible explanation for this host plant-specificity is
that grass species were sampled across different subsets of their
full geographic distributions [44]. Expansion of data collection
efforts into lowlands and over additional axes of plants’ latitudinal
distributions could improve resolution (e.g., [80]).
Plant-fungal network analysis provides important information

on gradients in species interactions that cannot be detected
through traditional analyses of composition and diversity (e.g.,
[19]). In our study, metrics of fungal network structure were not
affected by which grass species were present, despite the strong
signal of grass identity on fungal diversity and composition.
Instead, network properties varied most strongly among fungal
guilds rather than with elevation or grass species composition. AM
fungal networks were the most nested and the least specialized,
whereas leaf endophyte networks were the most specialized and
least nested. Root endophyte networks were the only networks in
which properties tracked elevation, with lower specialization at
higher elevations. We expected all fungal networks to become
more specialized at higher elevation sites, if high elevation
environmental stressors structured the costs/benefits of plant-
fungal associations. However, specialization may decline with
elevation if fungi become more strongly filtered by the abiotic
environment than by the host plant. AM fungi appeared robustly
general in their grass host associations, and leaf fungal
endophytes too host specific for network properties to track the
large environmental variation along elevation gradients. Other
studies of fungal symbiont networks across elevations are rare.
However, one prior study reported that leaf fungal endophytes
were most specialized at intermediate elevations, but only
examined one tree species on one elevation gradient [19].
Altogether, there is no support to date that elevation-induced
climatic stress gradients structure entire plant-fungal networks.

To our knowledge, our study is the most comprehensive survey
of plant-associated fungi along elevation gradients to date
(reviewed by Kivlin et al. [10]); however, our work had some
limitations. First, although all grass species that we surveyed
occurred in at least three elevations bands along each replicated
elevation gradient (e.g., mountainside), only 3 of 13 plant species
(Elymus trachycaulus, Poa stenantha, Trisetum spicatum) occurred
across all elevations that we sampled. In previous studies, we
demonstrated that a plant’s elevational range distribution did not
influence fungal endophyte composition in leaves [34] or roots
[24]. Nevertheless, we could not test for the interaction of
elevation and grass species due to the limitation that not all
species were present across all elevations. Second, the change in
grass composition with elevation affected how many grass hosts
were included in bipartite networks constructed at each elevation.
However, we tested for this limitation by bootstrapping network
statistics to only include five grass species per site, and we did not
detect any influence of which grass taxa were included on the
final network statistic in any case. Leaf endophyte colonization
rates and abundance were low in our sites [34], decreasing DNA
yields from this tissue type (Supplementary Table S2), which could
influence conclusions, but likely represents biological differences
in their abundances relative to root fungi. Primer specificity
among fungal guilds necessitated that we target the ITS2 region
for foliar and root endophytes and the more conserved LSU region
for AM fungi. Therefore, comparisons of richness and diversity
among guilds should be interpreted in light of the fact that less
conserved regions detect greater diversity among sequences.
Finally, our study was restricted to long-lived, perennial C3 grasses,
which makes the conclusion of an overriding influence of plant
identity conservative because we expect much larger host-
specificity of fungal symbionts when comparing e.g., trees versus
grasses. However, the degree to which the patterns of plant host
influence extend to other plant species with different life histories,
elevation ranges, or traits remains to be determined.

CONCLUSION
Environmental change has the potential to either directly affect
plant-associated fungi or indirectly alter these fungi via their
interactions with plant hosts [8]. Here we demonstrated robust
plant host structuring of leaf endophytes, root endophytes, and
AM fungi across 13 co-occurring grass species along replicated
elevation gradients. Grass identity explained the most variation in
plant-associated fungal diversity and composition, despite large
abiotic variation among sampling locations. Therefore, as climates
change, plant-fungal associations may only be affected if plant
species shift their geographic distributions [9, 81]. If plant-
associated fungi are unable to keep up with these spatial shifts
in plant distributions due to dispersal limitations, then current
plant-fungal symbioses may become decoupled. Our data
demonstrate that this decoupling could occur in all fungal guilds
but is most likely in leaf-associated fungal endophytes, which
were most strongly structured by grass identity.

DATA AVAILABILITY
Sequencing data is archived in GenBank. All other data is archived in EDI.
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