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While fungi are intimately associated with substrates in freshwater systems, the role of fungi in the open
water column is less well defined. Using next generation sequencing of 0.2 mme1 mm filtered water
column samples, we detected abundant and diverse fungal sequences across 25 stream and river sites in
the Ozark region of Oklahoma and Arkansas. Fungal communities were only weakly related to stream
environmental metrics with the exception of total phosphorus (TP). We infer from our results that TP is
acting as a proxy for unique catchment effects. We observed patterns of dominant community taxa at
higher taxonomic groupings but lower taxonomic groupings were site specific. OTU functional assign-
ment showed the majority of sequences to be related to plant and animal pathogens, and some sapro-
trophs. The likely allochthonous origin and strong site specificity of these fungi suggest overlooked
dispersal via lotic waterways, which may have important biogeographic consequences for fungi.

© 2017 Elsevier Ltd and British Mycological Society. All rights reserved.
1. Introduction

Fungi in aquatic ecosystems have been extensively studied,
typically focusing on substrate surfaces such as allochthonous leaf
litter in freshwater in the context of decomposition (Suberkropp
and Klug, 1976; Nikolcheva and B€arlocher, 2005; Sridhar et al.,
2008). One of the topics that has been largely neglected is fungi
in the water column not associated with substrates or sediment.
One study that assessed fungal biomass in the upper 1m of the
water column in 32 temperate streams in Poland found a significant
correlation between fungal biomass and total nitrogen (N) and
phosphorus (P) in water using regression and Pearson correlation
analysis (Gorniak et al., 2013). Community structure and role were
not directly investigated but direct fungal participation in water
column nutrient cycling was hypothesized (Gorniak et al., 2013).

Another possible explanation for fungal presence in the water
column is simply the deposition of hyphal fragments or other po-
tential propagules from air, upstream water, detritus deposition,
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and root to stream contact. Water column dispersal is well studied
for aquatic hyphomycetes (Ingold, 1942; Thomas et al., 1991;
Suberkropp and Wallace, 1992; Sridhar and B€arlocher, 1994) but
such inputs could provide an overlooked means of dispersal for
terrestrial fungi as well. In fact, fungus-like oomycete plant path-
ogens of the genus Phytophthora are well known to disperse via
river systems (Li, 2016). Recent studies clearly show that some true
fungi are dispersal-limited (Peay et al., 2012; Cline and Zak, 2014;
Peay and Bruns, 2014), leading to strong biogeographic distribu-
tion patterns (Taylor and Bruns, 1999; Peay et al., 2010).

Most work on dispersal in terrestrial fungi has focused on
movement of aerial spores (Brown and Hovmøller, 2002; Pashley
et al., 2012; Savage et al., 2012; Grinn-Gofro�n and Bosiacka, 2015),
including next generation sequencing studies of indoor air (Amend
et al., 2010; Adams et al., 2013). While aquatic hyphomycetes have
received attention with respect to diversity of decomposers and
macroscopic life stages (Fabre, 1998a, 1998b, 1998c), there have
been few studies of the roles of river systems in the dispersal of true
fungi in general, particularly by very small propagules. Given the
fact that streams and rivers serve as ecological aggregators of pro-
cesses throughout their watershed catchments (Frissell et al., 1986;
Allan, 2004; Bormann and Likens, 2012), and that riverine dispersal
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is important in numerous other taxa, e.g. fish, insects, reptiles, and
plants (Maguire, 1963; Bermingham and Avise, 1986; Bunn and
Hughes, 1997; Bernatchez and Wilson, 1998; Miller et al., 2002;
Santamaría, 2002; Petersen et al., 2004; Pellegrino et al., 2005;
Vanschoenwinkel et al., 2008), the lack of fungal studies repre-
sents a major gap.

A potential hurdle to investigating dispersal via the water col-
umn is determining whether or not fungi detected are active
aquatic community members or are transient and inactive. There is
a large body of evidence linking fungi to the phosphorus (P) cycle in
soils (Bolan, 1991; Schachtman et al., 1998; Van Der Heijden et al.,
2008). High total phosphorus (TP) is also an indicator of excessive
nutrients from catchments feeding into streams and rivers
(Schindler, 1977; Carpenter et al., 1998) and has a large impact on
aquatic systems (Bennett et al., 2001; Anderson et al., 2002; Hart
et al., 2004). Exploring fungi across a gradient of TP allows identi-
fication of relationships of free living fungal communities to P in the
water column.

The bulk of water-column particulate matter consists of eroded
soils and particulate organic matter (Schlesinger and Melack, 1981;
Waters, 1995; Bilotta and Brazier, 2008). Fungi are both ubiquitous
in soils and are directly involved in colonizing and decomposing
organic matter in streams (Christensen, 1989; Gessner, 1997). To
focus on dispersal via small fungal cells, fragments, and spores in
the water column, it is desirable to exclude fungi associated with
particles using a method like size filtering (APHA, 1998). Here, we
analyze total fungal diversity in a microscopic fraction (0.2e1.0 mm)
across a river system spanning a range of TP. While many fungal
cells are larger than 1 mm, we anticipated good detection of fungi
through small cells, spores, and cell fragments. The ecological
gradient is representative of differences in multiple catchment
properties such as vegetation and nutrient cycling across the varied
watersheds enhancing the exploration of relationships between
fungal communities and the environment in the system.

2. Methods

2.1. Sampling

Extraction of genomic DNA (gDNA) from water-column filter
samples was described in detail in LeBrun et al., (2017). The study
areawas a collection of mid-order (3rd-5th) streams and rivers along
the Oklahoma-Arkansas border, an area with known P enrichment
problems (Fig. S1) (Green and Haggard, 2001; Haggard and Soerens,
2006; Haggard, 2010). Sampling was performed in October of 2014.
Additional site characteristics are also available through a study by
Cook et al., 2017 (in press) where data on these sites was collected at
regular intervals over 2 y. The sampling sites represented a gradient
of TP levels from 7 to 173 mg/L. Sample processing involved a stacked
filtration of 50mL of water from ~10 cm below the surface in the
water column through a 1 mm glass fiber filter and then a 0.2-mm
filter. Only components collected on the 0.2-mm filters were used in
extracting the gDNA for this study (i.e. the 0.2e1.0 mm size fraction).

2.2. Environmental data

Environmental data including dissolved organic carbon (DOC),
total phosphorus (TP), total N (TN), C:N ratio, C:P ratio, sestonic
chlorophyll-a, total suspended solids (TSS), turbidity, pH, dissolved
oxygen (DO), temperature, and specific conductance in stream/
river water along with catchment size and catchment and land use
factors including percentage pasture land, percentage impervious
cover, percentage developed land were collected as reported in
LeBrun et al., (2017). In brief, water chemistry was measured using
YSI EXO2 multiparameter data sonde (Yellow Springs, OH) and
standardized water testing (APHA, 1998). Catchments were delin-
eated using ArcGIS and land usagewas estimated from the National
Land Cover Data (NLCD) raster (ESRI, 2011. ArcGIS Desktop: Release
10. Redlands, CA: Environmental Systems Research Institute., n. d.).

2.3. Library preparation

Library preparation for this study started with the gDNA
collected in LeBrun et al. (2017). An initial PCR amplification of the
ITS2 region was conducted using 5.8S_Fun and ITS4_Fun primers
(Taylor et al., 2016) modified to include adapters for future index-
ing. PCR was performed using 2� Platinum™ Green Master Mix
from Invitrogen. PCR specifications were 1 cycle for HotStart step at
94 �C for 2min followed by 30 cycles of 94 �C denaturation step for
45 s, 50 �C annealing step for 1min, and 72 �C elongation step for
1.5min. Successful PCR was identified through 1% agarose gel
electrophoresis run at 70 V for 40min. PCR cleanup was conducted
using an Agencourt AMPure XP kit (Beckman Coulter Life Sciences)
following the manufacturer's protocol. Final PCR product quantifi-
cation was conducted using a Qubit 3.0 system.

A second round of PCR amplification was run to add unique
indices to each sample as well as Illumina sequencing adapters. PCR
was again performed using 2� Platinum™ Green Master Mix. PCR
specifications for the second round of PCR were 1 cycle for HotStart
step at 94 �C for 2min followed by 8 cycles of 94 �C denaturation
step for 45 s, 59 �C annealing step for 1min, and 72 �C elongation
step for 1.5min. Cleanup and quantification were performed in the
same manner as the first round of PCR. Samples were then pooled
so that 10 ng of DNA from each sample was present in final library.

Sequencing was performed on an IlluminaMiSeq system using a
MiSeq Reagent Kit v3 2� 300 with paired-end reads. Libraries were
spiked with 20% PhiX control.

2.4. Sequence processing

Demultiplexing was conducted through Illumina BaseSpace.
Paired-end read FASTQ files for each sample were extracted for
downstream processing. Additional sequence processing was carried
out using Quantitative Insights IntoMicrobial Ecology (QIIME) version
1.9.1 (Caporaso et al., 2010). Paired-end reads were combined using
the fastq-join algorithm from ea-utils (Aronesty, 2013). Un-paired
reads were discarded at this time. The resulting sequences were
then filteredwith amaximumunacceptable Phred quality score of 20.
Chimeric sequences were identified and removed using the UCHIME
algorithmwithin USEARCH (Edgar, 2010). Operational taxonomic unit
(OTU) pickingwas performed via open referencewith a 0.50 pre-filter
using UCLUST against the dynamic UNITE database version 7 with a
0.94 similarity cutoff. Singleton sequences were removed during
OTU picking and taxonomy was assigned with the UNITE database
as reference. Reads identified as Plantae or Protista were then
manually removed from the resulting OTU table via filtering.

Functional information in the form of guild assignment to OTUs
was performed using the online version of FUNGuild (Nguyen et al.,
2016). FUNGuild parses OTUs into “guilds” or “functional group-
ings” based on their taxonomic assignments and ecological data
extracted from the literature (Nguyen et al., 2016). Guilds are
representative of species, whether related or unrelated, that exploit
the same class of environmental resources in a similar way.

2.5. Statistical analysis software

All analyses were performed in the R software package v.3.2.3
(R Core Team, 2015) using various packages and scripts as identi-
fied. OTU table BIOM files from QIIME were either exported to tab
delimited format directly fromQIIME or imported for use in R using
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the phyloseq package version 1.14.0 in R (McMurdie and Holmes,
2013).
2.6. Diversity, ordinations, models, and comparisons

Diversity metrics for Shannon (H’), Simpson (1-D), and Inverse
Simpson (1/D) indices were calculated using the vegan package
version 2.4e0 (Oksanen et al., 2016). Sample overlap was calculated
using the Morisita-Horn index and bootstrapping (n¼ 200) in the
vegetarian package version 1.2 (Charney and Record, 2012). Heat-
mapswere built using the heatmap.2 function in the gplots package
version 3.0.1 (Warnes et al., 2016). Heatmap dendrograms were
built using Bray-Curtis distance. Taxa that do not represent more
than 1 percent of relative abundance in any site were removed post
clustering for visual clarity.

Non-metric multidimensional scaling (NMDS) ordinations were
constructed to describe community dissimilarity in unconstrained
space using the vegan package. NMDS using Bray-Curtis distance
was performed for ITS2 and Guild datasets. NMDS plots were
created using the ggplot2 package in R (Wickham, 2006). Envi-
ronmental gradients were built on NMDS ordinations using ordi-
surf from the vegan package. Ordisurf uses Generalized Additive
Modeling (GAM) model building to overlay environmental vari-
ables in the ordination space (Marra and Wood, 2011).

ITS2 and Guild data were compared with a Mantel test using
the mantel function in the vegan package with the Pearson cor-
relation method and 1000 permutations in order to test for sim-
ilarity between the data sets (Smouse et al., 1986). PROcrustean
randomization TEST of community environment concordance
(PROTEST), a potentially more sensitive detection method than a
Mantel test, was also used to compare NMDS ordinations in the
vegan package (Jackson, 1995). PROTEST uses scaling and rotations
to maximize alignment in ordinations as a multivariate measure of
concordance in datasets along with permutation based signifi-
cance testing (Jackson, 1995). All PROTEST analyses were per-
formed with 1000 permutations. Mantel and PROTEST analyses
were also used to investigate relationships between fungal com-
munity assemblages and the bacterial community assemblages
from LeBrun et al. (2017) for the 23 sites shared between the two
studies.
2.7. Environmental groupings and analysis

Due to the experimental design focusing on a TP gradient, sites
were divided into groups of Low, Med, and High TP. Group cutoffs
were determined at apparent breakpoints in the distribution of
collected TP data. Low for TP was set for sites below 40 mg/L and
High as above 70 mg/L. The designation of groupings for each site
can be viewed in Table S1. Multivariate ANOVA (MANOVA) like
non-parametric analyses including PERMANOVA and ANOSIM
were then performed with 1000 permutations using the vegan
package to test for significant TP group related dispersion and
variation.
Fig. 1. Heatmap of community structure at the phylum level by site. Dendrograms are
constructed with Bray-Curtis distance.
2.8. Network construction and analysis

To visualize taxa relatedness and clustering, networks were
constructed from data imported through phyloseq using the
network package version 1.13.0 and igraph package version 1.0.1 in
R with Bray-Curtis distances (Csardi and Nepusz, 2006; Butts,
2008). Clustering for each network was performed using a spin-
glass model and simulated annealing via the cluster_spinglass
function in the igraph package.
2.9. Additional modeling and testing

Redundancy Analysis (RDA) models were built in the vegan
package (Oksanen et al., 2016) in order to describe the community
structure in environmentally constrained space for both OTU and
FUNGuild data. RDAmodel selectionwas performed by startingwith
an initial model including all collected variables and manually
removing collinear variables in an effort tomaximize adjusted R2 and
minimize the magnitude of difference between R2 and adjusted R2.

Generalized Additive Models (GAMs) were built individually for
each collected environmental variable against Shannon, Simpson,
and inverse Simpson diversity scores calculated using relative
abundance data. GAMs were built using the mgcv package (Wood,
2001) for multiple environmental metrics.

Indicator species analysiswas performed using the IndVal function
in R from the labdsv package (Roberts, 2013) with 2:6 clusters and
1000 iterations. Indicator species analysis identifies important taxa for
typologies created from any classification procedure independently
from the classification method (Dufrêne and Legendre, 1997).

Threshold analysis for TP and turbidity was performed using the
TITAN 2.1 package in R (Baker et al., 2015). Threshold Indicator Taxa
ANalysis (TITAN) identifies environmental variable values maxi-
mizing taxa frequency and abundance using bootstrapping to
identify reliable indicator taxa and the sum of indicator taxa value Z
scores to identify the environmental values representing the peak
of increase or decline of the taxa (Baker and King, 2010). The
number of bootstraps performed in our TITAN analysis was 200.
The genus taxonomic level was used and only taxa observed more
than 3 times across all sites were used.

3. Results

3.1. OTU counts and site diversity

We identified from 48 to 168 fungal taxa at each site across the
25-site system (mean¼ 85, SD¼ 33.25) (Table S1). Shannon index
values ranged from 1.59 to 3.36 (mean¼ 2.35, SD¼ 0.53), Simpson
index values ranged from 0.66 to 0.94 (mean¼ 0.84, SD¼ 0.08),
and inverse Simpson index values ranged from 2.98 to 17.25
(mean¼ 7.99, SD¼ 3.90) (Table S1). The Morisita-Horn overlap in-
dex was CD¼ 0.179 (SE¼ 0.0003). The heatmap of taxa at the
phylum level shows groupings of sites primarily dominated by one
of the phyla Basidiomycota, Ascomycota, or Chytridiomycota
(Fig. 1).

3.2. Network analysis

Network analysis showed small, distinct clusters of ecologically



Fig. 2. Taxonomic network generated using Bray-Curtis distances. Isolated taxa have been removed leaving only taxa with at least one connecting edge. Node size represents total
abundance of that taxon on a log scale. Taxa with red nodes represent less than 1% of total abundance while yellow nodes indicate taxa not considered “rare”. Taxa labeled
“unidentified.xy” were unable to be classified at the genus level.
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related taxa at the genus level (Fig. 2). The majority of taxa repre-
sented OTUs that made up less than 1% of total abundance and so
will be referred to as “rare” taxa for this study. The relationships
shown are between taxa throughout the sites.

3.3. Guild designations

42% of ITS2 OTUs were classified into guilds by FUNGuild. The
majority of taxa fell into animal and plant pathogen guilds as well
as unidentified saprotrophs (Fig. 3).

3.4. NMDS ordinations and RDA models

For NMDS ordination with taxonomic data, sites were dispersed
fairly evenly through ordination space with no apparent clusters of
sites. However, a pattern of sites positioning in a related manner
emerges when considering TP groupings (Fig. 4). The TP gradient fit
to the ordination using GAM explained 32.6% of deviance with
p¼ 0.02. NMDS ordinationwith the FUNGuild data showed slightly
more separation between potential groups of sites (Fig. S2). The TP
gradient fit to the ordination using GAM explained 48.2% of devi-
ance with p< 0.01. Results from PERMANOVA and ANOSIM were
both significant for TP groupings with F¼ 1.48 (p¼ 0.02) and
R¼ 0.131 (p¼ 0.03).

The Mantel test between the fungal ITS2 data and the bacterial
16S NMDS data from LeBrun et al. (2017) for the 23 overlapping
sites showed no significant correlation (rm¼ -0.033, p¼ 0.94).
Procrustean PROTEST comparison between fungal and bacterial
NMDS ordinations had a correlation statistic of 0.48 with p¼ 0.013.
The Procrustes error plot is shown in Fig. S3.

Attempts to model taxonomic community structure using
Redundancy Analysis (RDA) and GAMs with collected environ-
mental and land use variables were unproductive as none of the
environmental variables resulted in a significant model. The final
RDA model for FUNGuild data included TP, carbon to P ratio (C:P),
DOC, DO, temperature, and pH with an adjusted R2 of 0.345 and
p¼ 0.014 (Fig. 5). The direction of C:P was the antithesis of to DOC
and TP, indicating a relationship differing from TP or DOC, and so it
was kept in the model.
3.5. Indicator species and total phosphorous gradient relationship

Indicator species analysis was able to identify a few indicator
taxa in our system; however, the results were not consistent across
multiple runs and clustering levels, and identified taxa were few
and most only weakly significant. Two taxa that were consistently
identified were the genus Hygrocybe (d¼ 0.9804, p¼ 0.014) at
lower clustering levels (2e6 k-means clusters) and the genus
Entophlyctis (d¼ 0.948, p¼ 0.039) at higher clustering levels (6e10
k-means clusters). Unfortunately, the reason for these species as
indicators for the relevant sites remains elusive, although the log
abundance of Entophlyctis was weakly related to TP by GAM
(Deviance explained¼ 9.33%, p< 0.001). TITAN was unable to
identify any reliable indicator taxa or change points in system



Fig. 3. Heatmap of FUNGuild identified guild abundance by site. Dendrograms are constructed with Bray-Curtis distance.

Fig. 4. NMDS ordination of ITS2 community with Bray-Curtis distance (Stress 0.155). Gradient represents environmental TP fit to ordination using GAM.
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related to the TP gradient.

4. Discussion

4.1. Site specificity of fungal assembly

Taxa in the system showed a high site specificity. Visually, site
distributions in ordination space were widely dispersed and taxo-
nomic heatmaps (Fig. S4 e Fig. S8) illustrate the increasing site
specificity at lower taxonomic levels. This increase is to be ex-
pected; however, even at the class level, sites are distinct. We also
found quantitative support for this site specificity. For Morisita-
Horn, CD¼ 0 represents a system of samples with no overlap,
while CD¼ 1 represents a system of samples with complete overlap
(Jost, 2007). Thus, the observed value of CD¼ 0.179 indicates very
little taxonomic overlap. Little community overlap in the system
likely affected network analysis with the majority of taxa being
removed from the final network due to nodes having no edges
along with making it difficult for indicator species and TITAN an-
alyses to identify indicator taxa. In a previous study on bacteria and
archaea within the same system, we were able to establish that
there were no overwhelming effects of stream connectivity or
downstream flow in the system (LeBrun et al., 2017). The site
specificity in the current study also illustrates a lack of effects
caused by any site flow connectivity (Fig. S8).

4.2. Taxa relationships identified by network analysis

Themajority of identified relationships involve rare taxa (Fig. 2);
taxa sharing a relationship tended to be found in the same abun-
dances within the system. This finding could be indicative of taxa
replacing each other in roleswithin the different catchments ormay
be an artifact of the network construction due to site specificity.
Either way, these relationships warrant additional investigation.
These rare taxa showed no relationship to environmental variables
in the stream when separated from the overall community.

4.3. Nutrient cycling and environmental interactions

Analyses investigating fungal relationships to TP provided
mixed results. The GAMs built with the ordinations for both taxo-
nomic and FUNGuild data show a significant relationship between



Fig. 5. RDA model of environmental variables and FUNGuild designations at each site
(adj. R2¼ 0.345, p¼ 0.014).
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TP and placement in ordination space. It must be taken into account
that both ordinations had stress values bordering on the “suspect”
range (0.155& 0.104). However, a relationship to TP is supported by
the significant PREMANOVA and ANOSIM tests. The taxonomic
composition of the detected fungi did not correlate with any vari-
ables in RDA. Diversity was also unrelated to environmental metrics
as shown by the lack of significant GAM models.

Functional composition of the fungal assemblage via FUNGuild
designations appears to be more closely tied to collected environ-
mental variables thanwas taxonomic composition. The TP gradient
explains a higher percentage of deviance in the ordinations and the
RDA model ties the functional designations to catchment and
stream variables. The decoupling between taxa assemblage and
function makes sense in light of the specificity of taxa at each site.
However, the primary functional designations in the system, ani-
mal/plant pathogens and saprotrophs, do not intuitively apply to
non-substrate (i.e. not on detritus, other organic material, or sedi-
ment) water column processes, meaning these fungi are likely
transient.

Bacterial/archaeal communities in this system have previously
been connected to wider ecological data (LeBrun et al., 2017) and
the detected fungal communities are only weakly related to the
bacterial communities. The small but surprisingly significant PRO-
TEST correlation score is probably indicative of catchment effects,
spatial autocorrelation, or a relationship to an allochthonous,
terrestrial subset within the bacterial community. Ordinal TP GAMs
explain significant site organization in ordination space for both
fungi and bacteria. PROTEST is known to be more sensitive than a
Mantel test (Jackson, 1995) and so is capable of capturing these
types of minor effects; however, the Mantel test was insignificant
and the Procrustes error plot shows no cohesive trends or patterns
(Fig. S3).

We infer from the collective results that a correlation does exist
between the fungi detected at each site and TP but that the fungi
are likely transient and allochthonous rather than being active
water column community members. TP likely represents unique
catchment features such as vegetation, that are difficult to identify
due to a large number of environmental factors that could not be
included in this study such as vegetation. Stream TP is a product of
numerous catchment factors, so covariation of these factors with TP
is very possible (King et al., 2005). This allochthonous origin is
further supported by the identification of several taxa within the
system such as the Hygrocybe identified in indicator species anal-
ysis. Hygrocybe is a terrestrial agaric with spore sizes larger than
expected to pass through our 1-mM filter. Hence, it is unclear why it
was so readily detected or whether we were capturing DNA from
spores or cell fragments. While our findings corroborate prior
findings of a TP correlationwith fungi in thewater column (Gorniak
et al., 2013), our best guess based on our analyses of community
structure and predicted function is that these fungi are not major
participants in nutrient cycling within the water column itself.

4.4. Relationship of P to pathogens

In both constrained and unconstrained ordinations of FUNGuild
data, there is a clear distinction between placement of Low and
High TP grouped sites with Med grouped sites somewhat mixed in
with one or the other. An increase in the abundance of some bac-
terial pathogens coincided with increased TP in a previous study of
the same system (LeBrun et al., 2017). There appears to be a high
potential for factors that result in high P (e.g. agricultural pollution
or waste water inputs) to have a relationship to the presence and
abundance of both bacterial and fungal pathogens. Pathogens in
soil can cause negative density dependence in communities of
vegetation (Lalibert�e et al., 2015). Distribution of vegetation has a
strong relationship to both P levels and soil microbial communities
(Langille et al., 2013). All of these inputs affect waterways (Bormann
and Likens, 2012). While we have not established causation in the
relationship between P and pathogens, there exists a potential
feedback loop of pathogens affecting P and P affecting pathogens
within catchments and waterways. This is likely a complex rela-
tionship that would require further study to fully understand as our
data only hint at such a possibility.

4.5. The water column as a dispersal medium

There are multiple lines of evidence suggesting an allochtho-
nous origin for fungal taxa detected in this study. The identified
taxa are not likely active in stream nutrient cycles or processes and
they are only loosely related to bacterial communities in the sys-
tem, if at all. Our focus on a smaller size fraction favors detection of
small cells and fragments. In guild analysis, most taxa were iden-
tified as pathogens and saprotrophs. Organisms in these categories
have potential benefits from aquatic dispersal as streams are rife
with the detritus for saprotroph colonization and have access to
vegetation and animals for pathogen colonization.

Phytophthora, although not a true fungus, offers an excellent
example of pathogen delivery to terrestrial plants via streams.
Although Phytophthora is known for infecting agricultural and wild
plants on land, its primary method of dispersal is through the water
column and monitoring and detection is carried out directly in
streams (Sutton et al., 2009; Hulvey et al., 2010). A fungal pathogen
dispersing through an aquatic system is less dependent on chance
than it is through aerial dispersal. The water column might act as a
vehicle of pathogen delivery directly to a host, be it plant or animal.
In addition, aquatic dispersal offers the advantages of protection
from drought and UV stress that apply strongly to aerial dispersal.
Further investigation of fungal pathogen dispersal patterns through
natural streams and rivers seems warranted, as anthropogenic in-
puts to streams continue to grow (Søndergaard and Jeppesen, 2007).

5. Conclusions

Herewe have documented a surprisingly large number of fungal
taxa occurring in the 0.2 mm - 1 mm fraction of the water column.
These taxa mostly consist of pathogens and saprotrophs from the
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Basidiomycota, Ascomycota, and Chytridiomycota but their species
composition varied greatly by site. We infer that these taxa are
likely present due to deposition from allochthonous sources. The
site specificity, diversity, and abundance of terrestrial fungi suggest
an overlooked means of dispersal that could promote or reinforce
biogeographic patterns in terrestrial fungal communities.
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